一、基本信息
姓名:项思佳
性别:女
学历/学位:研究生/博士
职称:副教授
联系方式:sjxiang@zufe.edu.cn
二、个人简历和主要研究方向
哲学博士(Ph.D),副教授,硕士生导师
最终学历:
2012.06–2014.05,美国堪萨斯州立大学,统计学博士, (4.0/4.0)
2010.08–2012.05,美国堪萨斯州立大学,统计学硕士, (4.0/4.0)
研究方向:
混合模型(mixture model)
非参数、半参数估计(nonparametric/semiparametric estimation)
稳健估计(robust estimation)
数据降维(dimension reduction)
主持的项目:
国家社会科学基金,基于高维混合模型的聚类分析的统计推断及其应用研究,主持,20万
国家自然科学基金,半参数混合模型及变量选择研究,主持,20万
浙江省自然科学基金,混合模型的半参数扩展及其变量选择的研究,主持,5万
浙江省统计研究课题 ,混合模型的新估计方法及其应用的研究,主持,1万
半参数估计在混合模型中的应用,留学回国人员科研启动基金,主持,3万元
入选人才情况
“浙江省高校中青年学科带头人”,浙江省教育厅,2017.
发表的文章:
[1]Xiang, S., Yao, W. (2020). Semiparametric mixtures of regressions with single-index for model based clustering. Advances in Data Analysis and Classification, 14, 261-292.
[2] Xiang, S., Yao, W., and Yang, G. (2019). An Overview of Semiparametric Extensions of Finite Mixture Models. Statistical Science, 34, 391-404 .
[3] Xu, L., Xiang, S., and Yao, W. (2019). Robust maximum Lq-likelihood estimation of joint mean-covariance models for longitudinal data. Journal of Multivariate Analysis, 171, 397-411.
[4] Yang, G., Yao, W., and Xiang, S. (2019). Sure independence screening in ultrahigh dimensional generalized additive models. Journal of Statistical Planning and Inference,199,126-135.
[5] Xiang, S. and Yao, W. (2018). Semiparametric mixtures of nonparametric regressions. Annals of the Institute of Mathematical Statistics. 70, 131-154.
[6] Wu, J., Yao, W., and Xiang, S. (2017).Computation of an efficient and robust estimator in a semiparametric mixture model,Journal of Statistical Computation and Simulation,87,2128-2137.
[7] Yang, L., Xiang, S. and Yao, W. (2017). Robust fitting of mixtures of factor analyzers using the trimmed likelihood estimator. Communications in Statistics - Simulation and Computation, 42(2), 1280-1291.
[8] Xiang, S., Yao, W., andSeo, B.(2016). Semiparametric mixture: Continuous scale mixture approach.Computational Statistics & Data Analysis, 103, 413-425.
[9] Xiang, S. and Yao, W. (2016). A New Information Criterion Based Bandwidth Selection Method for Nonparametric Regressions. Journal of Statistical Computation and Simulation, 86(17), 3446-3455.
[10] Li, M., Xiang, S. and Yao, W. (2016). Robust estimation of the number of components for mixtures of linear regression models. Computational Statistics, 31(4), 1539-1555.
[11] Xiang, S., Yao, W. and Wu, J. (2014). Minimum profile Hellinger distance estimationfor a semiparametric mixture model. The Canadian Journal of Statistics, 42(2),246-267.
[12] Cernicchiaro, N., Renter, D.G., Xiang, S., White, B.J. and Bello, N.M. (2013).Hierarchical Bayesian modeling of heterogeneous variances in average daily weightgain of commercial feedlot cattle. The Journal of Animal Science, 91, 2910-2919.